M233 Spring 2004 Homework Assignment 2

Due: 23 February 2004

1. Sketch the graph of \(r(t) = t^2i - \ln(t)j + 2tk \) for \(\frac{1}{100} \leq t \leq 2 \). Calculate the velocity vector \(r'(1) \), the unit tangent vector \(T(1) \), and the tangent line to the curve at the point \(P_0 = (1, 0, 2) \). At what point does this tangent line intersect the \(xz \)-plane?

2. What Cartesian equation describes the normal plane to the curve \(r(t) = t^2i - \ln(t)j + 2tk \) at \(P_0 = (1, 0, 2) \)?

3. Calculate the arc length of \(r(t) = t^2i - \ln(t)j + 2tk \) between the points \((1, 0, 2) \) and \((e^2, -1, 2e) \).

4. Calculate the principal unit normal vector \(N \) to \(r(t) = t^2i - \ln(t)j + 2tk \) at \(P_0 = (1, 0, 2) \). State symmetric equations for the normal line to \(r(t) \) at \(P_0 = (1, 0, 2) \). (This is the line through \(P_0 \) with direction vector \(N \).) Calculate the unit binormal vector \(B \) to \(r(t) = t^2i - \ln(t)j + 2tk \) at \(P_0 = (1, 0, 2) \). Find a Cartesian equation for the osculating plane of \(r \) at \(P_0 = (1, 0, 2) \).

5. Calculate the curvature of \(r(t) = t^2i - \ln(t)j + 2tk \) at \(P_0 = (1, 0, 2) \). Describe the circle of curvature of \(r \) at \(P_0 = (1, 0, 2) \).